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ASTRONOMY 170 

ñX¿> 

17 February 1965 Problem Set # 1 

COMPLETED PROBLEM SETS ARE DUE AT LECTVVRE ON MONDAY, 1 MARCH, 
m  GENERAL„ NO LATE SETS WILL BE ACCEPTED. 

l.a) Give a simple derivation (i.e., do not use spherical Bessel functional 
shoving that theoretical resolving power Q ** X/d, where d ia the dia- 
meter of the aperture of the optical instrument. 

b) How is the resolving power affected in practice when one observes 
a planet from the Earth's surface? 

cî How is the resolving power affected in practice when one observes 
the Earth's surface from an artificial Earth Satellite?   ((3 pts.)) 

2. Compute the general expression for pressure, p, %%  a function of 
altitude, h, in the atmosphere of a planet of radiu, R in which the 
temperature varies linearly with height — i.e., T » T0 [ l+a(h/fe)~] 
«here TQ is the surface temperature* (0  pts!H 

the base of th<& Martian exosphere th> number density 
> x  10' cm"*3 and the composition is p:imarilv atomic 

NOTES i 

3. Assume that at 
of particles is 5 x 10' cm"J and the composition is primarily Atomic 
oxygen. Atomic hydrogen is present in abundance < 10"* that of 
oxygen by number (fractional abundance }. For the temp rature of the 
Martian exosphere, consider two cáseas (a) T is cons tait at 500°Kf and 
Cb? T is constant at 1200°K. For each case, graph the tydrogen end 
oxygen densities as functions of altitude. Determine tie overall 

atmospheric density at the orbits of Phobos \nd Deimos. 
Be sure to allow explicitly for the variât on of 
gravity with altitude. 

(2}  You should plot two separate graphs for the two 
temperatures. On each graph will be two cuires, one 
each for H and O. ((5pts.H 

There are a number of instructive bounds which can be pit «ad on 
various physical features of planets which are based on theassumptions 
of hydrostatic equiSbrium and of monotonie density decrease*ith radius, 
Consider a non-rotating, spherical planet with the following physical 

parameters s R, total radius; Mf total mass; p  , average 3ens£y; p « 
the center; p_, pressure at the center. •* c density at the center; pc, pressure 

a) Referring to the equation of hydrostatic equJJbbriuii 
obvious condition will p 
and mean radius? 

undvr what 
, be the smallest for planets oí  given mass 

Show that if this condition obtains, than 

bj Under what obvious (but unphysical) condition will p„ be the 
largest? Show that the implied inequality due to this «ondition om 
be combined with that in (a) to give 

*b?6**¡« ± % * ¿®Vv* CC4 rts). 



&STROEOMY 170 Problem Set # 1 
Page 2. 

|5). The general equation of motion of a «cutral fluid in a gravi- 
tational field is 

v)v - -y*v-f> +3 
Where V is velocity, p is pressura, f> is density, t is time, and 
g is acceleration due to gravity. This equation was first obtained 
by L. Bular in 1755, and is one of the fundamental relations of 
fluid dynamics. 

a) Show that in a special case, Euler's equation will reduce to 
the aquation of hydrostatic equilibrium. What is the special case? 

b) If there is no external force, what can we say about the 
pressura in the fluid if it is in equilibrium? 

c) Assume that there is no significant compression of the fluid 
under the action of an external force. Integrate the vectorial form 
of the equation of hydrostatic equilibrium fcf. part a) to obtain an 
expression for the pressure in terms of the altitude."" Designate 
which of your axes is vertically upward. 

CO pts.n 



ASTRONOMY 170 I 
24 February 1965 Problem Set 2 

COMPLETED FBGBL.B4 SETS ARE DUE AT LECTURE! ON WEDNESDAY,  10 MARCH 

1,    An Ideal gas consista of N molecules each of mass m at a temperature T and contained in 
a volume T0 

Oka) Calculate the mean speed* v, of the n»lscuies0 

I b)  Calculate the roofc^mean^aquare epeed8 ▼fmB» of the moleculeSo 

I c) Calculate the mo3t probable velocity, v^9 of the molecules. m 

fllA) Calculate the most probable speed, v , of the-molecules» mc 

I e) Show that if v   is any cartesian component of ▼, then   'ttv^ » (p£>)' 
value for the spaed of sound in a gas» J 

". This is Nowton's 

2 f) Show that the fraction of mol seules that have speeds greater than some arbitrary value 
v is t 

v/v 

i 

where 
m 

HINTS*   (1)   ^V «  -fvvUv 
C3) Integrate by parts. 
(3) 

(4) The error functioiTis d( defined by 

«f<?>a fe[e"*> 
It is normalized mich that erf(oo>) = 1. 

((8 pts.)) 

Consider a drag~perturbed satellite orbit. let 5? be the component of force along the 
tangent to the orbit andyme C( n* + m ), where m8 and m are the mass of the planet 
and satellites respectively. 
The following discussion is exerpted from pp. 344=»245 of Fundamentals of Celestial 

Heohani eg by J.M.A. Dauby, Macmillan,1962¿ 

MTo find the (effect) of T...  , it is possible to proceed from first principle! 
The change in speed is 

dv e Tdt ; 

differentiating the energy equation 

v3 - * 

we find 
^-¿) 

2vdv=L(2S^ B 

so that 
da/dt k.M 

/" 
"Por a satellite moving close to the Earth8s surface» the law of resistance 





^^X%^£ Zt^oTe* ^^fonleeo) aerodynamic ^ 
5*., is a force par- unit mass.» • *   8 the *tno«PhePlo density,., 

ïs tfee apianen   above ccrreet ? T^ 4+ ««.  
clearly poin-, ou ; iv iu    no    I»?J ♦  S ^^ ""* QlaXit* »•    If « i» »ot, *~       ou    way XT; is not aad what ^ ^^^ argunent shouU b^ "°6« 

(tS pts. )) 

At t . 0 the vMoeity distribution function is giren by 

*¡£^iMt£&^*.t Tu ÍLÍ? tSV6n 2aas,litude <* «peed. Notice that this 
produce. However? assu^ £ ¡t «^ell^°it2njam> distribution,  30 that it is hard to 
i. eheh thlï        I! a* " *T fl0iaSh0W beett ^oduoed at • . 0. The normalisation 

tYta) H»w many molecules are to «hs right 0f the plane x * 0 at t » 0 Î 

(kb) What is the total kinetic e.ergy of the gas ? 

V ^^^^^^^^^Z^ if *» «** - *»C «-N Provided the walls 
constant, lb not n¡Kct LïusiSsf    " ^ ** *"* *° ""^ a -*^cative 

4     ... "* « 1. «4 pts.)) 

ullZ"?l: V?" :n f,V*rof planeir—° * «--. - upper or cut,ofT to the atmosfera. In parts & and h below do so for the Earth. 

ASSUMPTIONS TOE 

*ARTS â and b    »    (1) Magnetopause is at-14 Earth radii. 
/ti ?3e "* ex°sphere is at ~600 kms. 
I    Sl^°n aî Hse °f «*<**«* is primarily 0. 

(4)  Composition at magnetopause is primarily H. 

> a) Be-intgerate the definition of the h.™ «^-«,- 
cut-off occurs at the nagetonause   FiST T  ^f?05^6™. assuming that the atmospheric 
at the base of the e^SCf ?nSuS Lïiïîî^ïî egression for the number densîtv 

^Estimate the error which ís oS?Si^«^ f^?6/^*1011 of Cavity with dipneo. 
Vc)1^ thefrSpWe ^^ VSESgf * "* deflnitio* °* the exosphere by astlni* 
Vc) «nder what conditions for some other^et *** an atmospheric cuWf he import, 

«5 pts.)) 



ASTROHOMY 170 
10 March 1965 Problem Set # 3 

COMPLETED PROBLEM SETS ARE DUE AT LECTURE OH MQHDAY, 22 MARCH, 

1. (4  pointe]) Caí Calculate the equilibrium pressure of xenon in the 
lunar atmosphere. Assume that 

(1) the surface temperature £^400°K. 

(2) thermal escape is the only loss mechanism. 

(3) xenon is produced by the bombardment of the lunar surface by 
cosmic rays, with a cosmic ray flux of 2 cm"*2 sec"**. 

C4) each cosmic ray magically produces one xenon atom, on the 
average. 

(5)  the cosmic ray intensity in space is isotropic. 

Why does your answer in (&}  disagree with the bound given in 
lecture for the lunar atmosphere? In seeking the explanation of this 
discrepancy, compare the equilibrium time «■»«- i.e., the time required 
for the xenon to accumulate to its equilibrium density «- with the 
age of the solar systssa. 

2. (6  pointsD Calculate for the Martian atmospheres 

(a) B, Ccíyíc.. 

assume that 
Î1S the lower atmosphere can be considered for this 

problem to be isothermal, and it consists mainly of molecular nitrogen, 

m  ^surf ~230°K, P8urf ~* 1/20 atm. 

from the altitude at Tshich diffusive equilibrium 
obtains to the base of the exosphere, the atmosphere is isothermal 
at ~/ 900°K. 

the exosphere is isothermal at ^^900^. 

(continued next page) 



ASTROÏSOMÏ 170 Problem fcet # 3 ^continued? 

3. (6  points) Consider a planet whose atmosphere and exosphere 

originally contains 959S molecular hydrogen, 496 water vapor» and 1% 

silane (SiH4D by number. Consider the plarut and atmosphere other- 

wise to have properties similar to those oí the Earth at the present 

tima — i.e., same g, same exosphere temperature» same radius, etc. 

Heglect the photodissociation and ionisation of molecular hydrogen 

and the ionisation of silane and water. Consider the photodissociation 

times of water and silane* and their cheiical reaction times, to be 

short compared to the escape time of sao Jocular hydrogen. 

(a) Find the time when there will »e an equal number of water 
and hydrogen molecules. 

Find the subsequent time when water will lose the dominant 
role in the composition which it has gained in part fa) —• i.e.. 
when there will be little water compared with other substances in 
the atmosphere. You may define "littlo" in any convenient way. 

CcD sow soon will the surface be coated with sand and the 
ataospher© relatively depleted of sil.me? Indicate the chemical 
reactions responsible for these evento. 

$á)  At the time found in part (c), what is the composition of 
the atmosphere? How long will the planet retain an appreciable 
amount of this atmosphere? 



ASTRONOME 170 
22 March 1965 Problem Set #4 

COMPLETED PROBLEM SETS ARE DUE AT LECTURE ON WEDNESDAY» 31 MARCH. 

1. (6 points) (a) Findoe, i^, and kg for a perfect gas. 

(bj Find the pressure-température relation in s con- 
vectivo fluid for each of the following two equations of states 

m  £ (const.) [}f/f0 )?/3 -  <j>/£o )5/*J p0    L*y- jo •        \r J0 '   -i . which 

is called the Murnaghan-Birch equation of state; and 

(ii) 5/3 
p - (const.) (o",*>,  which is the equation of stats for 

s completely degenerate electron gas obeying Permi-Dirac statistics. 

2. (3 points) (a) Compute to first order the effect of the variation 
of g with altitude on a dry adiabatic lapse rate. 

(b) Is the above effect realistically significant at 
high altitudes? Explain. 

3. (6 points! (a) Compute the number density, n(h), in the Earth's 
atmosphers at altitudes of 5 and 10 las, assuming adiabatic equilibrium. 

Derive the adiabatic scale height, defined in terms of the 
logarithm^derivativs of the adiabatic density profile. 

(c)  Calculate the value of the adiabatic scale height for a 
representative average temperature of the troposphere — say, 250°K. 

fd) See how good an approximation to an adiabatic density profile 
is provided by the expression 

n(h) » nQ exp|-h/Hady  , 

where n is the number density at the Earth's surface, by using thés 
expression to calculate the densities at 5 and 10 km. 

(continued next page} 



ASTKONOM* 170 Problem Set #4 ^continued! 

4. (5 points) (a) In class we obtained a differential equation for 
the variation of p with depth in the interior of a convectiva Earth. 
Allowing for the variation of g with depth, integrate the above equa< 
tion under the assumptionst 

<t) 

(ii) 

const. 

(a + bp) 

y and 

-1 

Knowing that o » 3 gm cm"3, what values of kg and a and b, 
respectively, ara required to give ? ■ 5.5 p caT3 for the Earth for 
the two cases? 

5. (5 points) Read pages 82 and 83 of Brandt and Hodge. Assume thats 

fl) Convectiva flux « radiative input; 
(2) Flux of radiation at the top of the Earth"s atmosphere » 

2 oal cm"2 min**» 
£3) About 40% of the radiation incident on the Earth is reflected 

back into space. 

Ca) Using mixing length theory, find how super adiabatic the Earth0s 
atmosphere can be. 

(b) Find the Vrm0 of convectivo motion. 

{{c}  Determine the mean lifetime of a convectiva bubble. 



29 March 1965 
ASTRONOMY 170 

Hour Examination 

Boltzmann0 s constant k - 1.38 x 10"16 erg (K0)"1. 

Newtonian gravitation constant O « 6.67 x 10"8 dyne cm2 gm~2, 

Mass of hydrogen atom m - 1.67 x ICT24  gm. 

1. C30%| Diamonds are found in both iron and stone meteorites, in 
the laboratory, pressurée of «bout 35,000 atmospheres are required to 
produce diamonds from graphite. Assume that the diamonds in meteorites 
were formed under high pressures from graphite. 

If the diamonds were produced in the interiors of meteorite 
parent bodies, what was the characteristic dimension of these parent 
bodies? What objects in the solar system today have such dimensions? 

Alternatively, we can assume that the diamonds were produced 
when the meteorites impacted the Earth. Are the pressures exerted • 
even for a brief period of time «— during such an impact sufficient 
to produce the diamonds? 

2. Î30XJ The hypothetical planet Y Velorua VIII has a mass 100 times 
that of the Earth and a radiun to the top of its clouds 10 times that 
of the Earth. At some reference level above the clouds of this planet„ 
the atmosphere is composed «ltoat exclusively of molecular hydrogen. 
The temperature at this level is so low that vibratlonal and rotational 
degrees of freedom are not excited. The actual temperature gradient 
at this level is 2 K°/kra at the moment of observation. The temperature 
at the top of the clouds is 200°K. 

M  If no condensation occurs near the reference level, is the 
atmosphere stable against convection? 

If very extensive condensation occurs at the reference level, 
is the atmosphere stable agaiimt convection? 

Cc| Now assume that there is no condensation above the clouds, 
what is the maximum distance between the top of the clouds and the 
tropopause? 

(continued next page) 



ftSTBOHCVS* 170 Hour Examination 2. 

3. i^tifct) According to the planetary cosmogony of Kuiper, the Earth 
formeras a massive protoplanet of cosmic composition. Most of the 
initial-mass subsequently escaped into space. 

Wiiuhowed in class that the thermal escape flux from the base of 
a planetery exosphere, L„ can be given by 

1-, &nT-JL- 
j L2lrHj •] 

1/2 
Re ■R/Hj 

(a)  Show that the above equation implies that because of thermal 
escape,, tht functional dependence of the total protoplanetary mass on 
time follows an exponential decay law. Formulate the problem in 
such a way that the number density at the base of the exosphere0 nj 
does not ap|?ar explicitly in the result. 

lj 

©how that the mass escape rate is a maximum if R/B ^1. Using 
the equation derived in (a) for Tfl'lt)  and for the case RAi ~^10  com- 
pute a rough characteriatie time for the Earth to have lost 1 = (l/«) 
of its initial, nans. Assume that the mean exosphere temperature 

•V 10 OK during this period, 
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ASTROKQîW  170 
12 April 196- Problem Set #5 

COMPLIED mOh.^ f¿ETí   ARS Düg Âï LECTURE 071 WEDNESDAY,   21 APRXL. 

1.   (5 po.ntsD Let p^»^ u denote the radiation pressure and radiant 
energy de\sity„ res4nüvely*  of radiation incident on a perfectly 
absorbing surface.    H%^ec^ the emitted raclant fluas. 

(a)  in Seeking WK a leiationship between p and u0 precisely for what 
volume is "a" to be ovalu^^?    Explain. 

Show chat fo:r the csu3 Qf un •form hemispherical radiant flux 
and total aïscrptioji,  p = u/¿. 

(G) Deriva a re at ion between ^ and u for the case that a beam of 
radiation ie norma ; ay_ incident on \ perfectly absorbing surface. 

2.   J4 points)  3.w 1884„  Soltzmann ú duced theoretically that the total 
rate of emissicn of radiant energy by an ideal radiator   CbiackbodyS  i8 

proportional t< the 4th povrer of £\e Kelvin temperature.    It can be 
shewn from this that the radiant j\ergy density, u0 within an enclosure 
whose walls are at a uniform temp rature 0   is also proportional to T^. 

Since blaecbody radiation caribe described by the coordinates 
p„  V,  and T„   it seay be treated as ¡. chemical system,,   and thermodynamics 
may be applied r.o it. 

flaj Show frci thermodynaraic re Lai; ions derived in class that if U is 
the internal entrgy of a chemical syitem0 then 

» T/fet     - P ./§p\ 

Wv 
The alx>ve equation,, known a;i the enerjy equation„ enables us to draw 
conclusions abo at ü for any system whore equation of state is known. 

fb) By applying the enertjy equation to the case of blaekbody 
radiation encii>sed in an evacuated container whose walls are perfectly* 
reflecting the:.*mal insulators „  show that 

u « bT4   , 

whore b is a constant.    From this exp©€íJ8ion¡, derive the blackbody 
emission flux. 

CO&TItëUED HEJ2F  PAGE 



ASTAiomr 170e  Problem Set #5 ^continued): 

3. (5jointsI (a) Show that th© saturation vapor pressure over ice^, 
PS9 Cil be given approximately by 

Ps = 
ci • 

What asumptions are required in the derivation of the above equation? 
What ar» the values of c. and c,? 

CbJ 1  the clouds of Venus are composed of ice„ how much water 
vapor she,id we expect above the clouds? Compare your result with 
the rang* of spectroscopic results for the water vapor above the 
clouds of'/enuss 

10""'1 g cm"*2 CDollfusi 
«3     „2 

<10  gm cm  CSpinrad] 

(c)  If t'.o clouds of Jupiter are composed of ice» how much water 
vapor shoul' be expect above them? Should it be detectable spectro- 
scopically? 

(àl  If th> clouds of Jupiter are composed of ammonia, how much 
ammonia vapcj should we expect above them? 

HIHTS: 1. Laünt heat of vaporization for water » 2.83 x 10 ° ergs gra™ , 
2. Th© iriple point of water is at f?0°C9 6 mbK 
3* Infsired bolometric temperature of th© clouds of Venus « 234 K„| 
4. Infr.red bolometric temperature of the clouds of Jupiter 

~190°K. 
5, Laten, heat of vaporization for ammonia = 1.37 x 10  ergs gm 

4. ([7 points}   fa^ Consider the saturation adi&batic process of an air 
parcel lifted pas\ the level at which it becomes saturated. Show 
that the First Law of Thermodynamics for this process may be written 
as 

* L dw. c dT + p dcx 
v    * 

where L is th© laten'; heat of vapor izat ion e  w is the mass of water 
condensed per unit rciss of air„ and      „ #* «,_ 

Combine the relation in fa| with the equation of hydrostatic 
equilibrium to obtain an expression for th® saturation adiabatic 
lapse rat©„ P . 

ijcj Compare the relation derived in Cb| with the relation that 
was derived in class. Calculate a rough value of Y) for the earth's 
atmosphere. *• 



■ ¡AST" 

5 

COMPILED PROBLEM Sl^S ARE BUS IK R( 
OBSERVATORY, OH FRIDAY, 14 MAY. 

1. (6 paints) (a) Consider the case ©3 
the surface temperature of a plane paz 

T for Oá t< Í 

T = T  for fL £ t <  P 
o     2 

Solve the one-dimensional equation of beat coi 
temperature at all depths and times. 

Approximate the step driving-function in {:■.;: 
few terms — perhaps 4 or 5 — of a Fourier series, 
how well the step function is approximated, with the 
lation of the step driving-fusction, solve the one-diia 
conduction equation again and compare the result with til 
obtained in (a). 

2. (4 points\    Radioactive potassium, thorium, and uranium 
centrations found in ehondritic meteorites release ~10~: 

sec -1 of heat. Consider a largo, initially "cold" object © 
. 

ehondritic composition in interstellar space. Assume its 
conductive properties to be those of any rocky material. 

neglecting heating hy  starlight, eompute its equilibrium 
temperature. 

3. S3 pointsD Consider the Planck distribution for the two special 
cases: (i) long wavelengths and high temperatures y and CiiJ sh< 
wavelengths and low temperatures. At surface temperatures of 
terrestrial planets and at microwave frequencies, which of t^ese 
approximations is valid? what are the bounds on the vaveleagth <' 
which this approximation is valid for those temperatures? 



5 May 1965 
ASTRONOMY 170 

Problem Set #8 

COMPLETE PROBLEM SETS ARE DUE IN ROOM A-103, HARVARD COLLEGE 
OBSERVA^RY, ON FRIDAY, 14 MAY. 

a. (7 poia3) (a) Murray, Wildey, and Westphal (Astrophys. J. 139: 
986, 1964) have obtained brightness temperature maps of Jupiter in 
the 8-14 mivron region. Using the approximation to the Planck 
distribution, in their wavelength and temperature regimes, of 
B^ oC T ,  whtre n«8.!i, determine from their Pigure 1 an aoproxi- 
mate limb-dastening lau of the form L^oC/u", where arc cosic - the 
angle between the loca? planetary normal and the line of sight, and 
CK is a constant. 

(b) Assume th*t we ire seeing an atmospheric region in the 8-14 
micron regime on Jupiter characterized by connective equilibrium 
and pure absorption. Determine the values of t , >1 , and s required 
to explain the obaerve-.ions and discuss whether the eonvective-pure- 
absorption model can p'-ausibly explain the observations. 

2. C5 points) (a) Compsie the temperature gradient for radiative 
equilibrium using the El3ington approximation with the temperature 
gradient for convective aquilibriura, under the boundary condition 

>pft as T< lo' 

Write down the Échwarzscfcild instability criterion for this 
case analogous to the criterion 

n^fls + 1) 

Y- 1 
>4 

derived in class. 



ASTRONOMY 170 

21 April 1965 Problem Set «6 

COMPLETED PROBLEMS ARB DUE AT LECTURE ON MONDAY, MAY 3rd. 

1. (4 points) (i} If the phase law. <j?(C*), is symmetrical with respec 
to the direction of incidence, then 

q 5* ÍCO sinCXd Ci   . 

Show that this asiumption can always be made, even if the actual phase 
law is asymmetrical,by considering a mean phase law given by 

A(c<) - I r^coc)  ♦ 4H2TT -CX )J • 

Show that tfie phase integral q is equal to the volume inside 
the surface generated by rotation about the polar axis of the phase 
curve à (&)  plotted in polar coordinates. 

-2 ik^T 
(c) What is the average visual surface brightness (in ergs cm 

of Venus when at fill phase as seen from the Earth? 

HINTS» 1. You may ipproxiraate the Cytherean reflection curve by 
Lambert's law. 

2. The surface brightness of a Lambert disk illumxnatea.afc 
normal incidence and at unit distance from the Sun «i.e., 1 A.U.) is, 
by definition, 

B " T 
where I is the enerçy flux density received from the Sun at unit 
distance. 

2. (5 points) (a) Fill in the columns for Oí^*. Tsyncn. 
Rnd Tnonsynch 

in the table for all the planets, the moon. 
and the asteroids as giv«n in lecture, use the approximate wavelength- 
integrated albedos given in class. 

Cb) Approximately what temperature error would be introduced if we 
used visual rather than wavelength-integrated albedos for the terrestre 
planets ? 

CONTINUED ft£XT PAGE 



ASTRONOMY 170 Problem Set #6 (Continued) 

3. (3 points) Murray, wildey. and Westphal (Astrophvs. j. 139:986. 
1964) have determined a mean brightness temperature of the satellite 
Jupiter IV in the 8- to 14-/6 region as 168.5°K. Compare this 
brightness temperature with the equilibrium temperature which you 
expect for Jupitar IV and explain quantitatively why Murray, Wildey, 
and Westphal found their result to fee perplexing. 

4. (4 points) (a) Deriva the Roche Instability criterion for two test 
particles in synchronous rotation about their primary. 

Cb) Imagina the Sun surrounded by a nebula of half thickness equal 
to the radius of Jupiter and which everywhere exceeds the Roche 
density, so it is gravitâtionally stable against tidal disruption 
by the Sun. 

What is the mass of the nebula? 
total present mass of the planets? 

How does it compare with the 


